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In elementary dynamics, the concept of a large force acting for a short time is
used to simplify the analysis of impulsive motion of two masses undergoing
collision. When the duration of impact is known, the average force of impact can be
estimated from the momentum exchange between the masses. Additional
information on the impact force variation is extracted in the present analysis by
using a linear spring}damper contact model. The analysis relates this force
variation to the average force and the coe$cient of restitution between the masses.
The deviation of the coe$cient of restitution from unity is the e!ect of the internal
damping in the materials and this deviation increases with damping. As the
damping increases, the maximum impact force decreases initially until it reaches its
minimum as the coe$cient of restitution approaches 0)49. Further increase in
damping results in an increase in the maximum force at an increasing rate, which
becomes signi"cantly large when the coe$cient of restitution falls below 0)3.
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1. INTRODUCTION

In power tools such as chipping hammers, the impacts between various
components are used to transmit power from the driver to the load. Clear
understanding of the impact phenomenon between two masses is essential for the
design and maintenance of such tools. The cumulative e!ect of the impact, such as
the changes in the velocities of the masses, is often estimated using the concept of
a large force acting over a relatively short duration. Such an approximate analysis
can be used to estimate the average force of impact, when the duration of impact is
also known. This concept, however, is not descriptive enough to enumerate on the
nature of the force variation during the impact.

During a perfectly elastic collision, the interaction between the colliding solids
can be conveniently represented by a contact spring. In the contact model, a sti!er
spring increases the impact force and thereby reduces the duration of impact. When
the curvatures of contacting surfaces are large, their contact becomes concentrated
at a point and the Hertzian contact theory is known to predict a predominantly
non-linear contact spring [1]. The force transmitted through such a spring is
proportional to the displacement raised to the power 3

2
. However, in several
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engineering designs, a series of impacts is used to transmit force from the driver to
the load. Conforming hardened surfaces of small curvature are the preferred choice
for such applications. The sti!ness of the contact spring in such a situation can be
treated as a constant. Obviously, there cannot be any energy loss during such
a perfectly elastic impact represented by a contact spring alone.

Since an appreciable amount of mechanical energy is lost during collision, the
concept of a coe$cient of restitution is introduced in elementary dynamics for
the study of such impacts [2, 3]. Among other factors, the internal friction of the
deforming materials can be considered as the important cause of the energy loss
during impact. Viscoelastic material models are useful in understanding the e!ect of
internal damping of the colliding materials on the impact force variation.

A Kelvin}Vio( gt solid, symbolically represented by a parallel combination of
a spring and a damper, is perhaps the simplest model for representing the
viscoelastic behavior of the materials [4, 5]. In this symbolic representation, the
spring represents an elastic solid behavior and the damper denotes a superimposed
viscous liquid characteristic in the stress}strain relationship of the material. This
solid model behaves like an elastic solid under static working conditions and the
viscous component becomes important in applications such as an impact which
involves sudden velocity changes.

When there is an appreciable energy loss during impact, the contact spring model
of elastic solids can be modi"ed as a parallel combination of a sti! spring and
a damper for a preliminary analysis. A complete analysis using such a simple
theoretical model is a useful "rst step in understanding the physics of the force
variation during impact. To the authors' knowledge, a complete analysis of the
force variation during impact using a linear spring}damper combination is not
readily available in the literature.

Even though the maximum value of the impact force is the most appropriate
measure to represent the severity of impact, its accurate measurement during the
short duration of impact is di$cult. Depending on the application, the average,
root mean square (r.m.s.) and root mean quad (r.m.q.) values of the impact force are
sometimes considered to be the alternative measures of the severity of the impact.
Here, the average and the r.m.s. values of a periodic variation are the most common
measures of a periodic variable in several applications. However, the r.m.q. estimate
is found to be more appropriate to represent a short duration event such as an
impact which occurs within the periodic variation. This estimate, which represents
the fourth root of the mean value of the fourth power of the variable, is considered
to be a better performance index to assess the e!ects of shock and impact ridden
force variations in human body vibration studies [6]. These measures of the impact
force variation are also evaluated using the chosen mechanical system model.

2. THEORY

Figure 1 shows a mechanical model to study the impact between two masses
m

A
and m

B
. The interaction between these masses at the contact is represented by

a parallel combination of a spring of sti!ness k and a damper of viscous damping
coe$cient c. Naming the displacements of the masses during the impact as x and
A



Figure 1. Mechanical system model.
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x
B
, and their separation at the beginning of the impact as ¸, the compression of the

contact spring}damper combination can be expressed as z"¸!(x
B
!x

A
) . In this

notation, zR represents the velocity of mass A relative to mass B and consequently,
the force F in the spring}damper combination becomes czR#kz.

Since the forces acting on the masses are internal, the equation of motion of the
whole system reduces to m

A
xK
A
#m

B
xK
B
"0. Using the relation zK"xK

A
!xK

B
, the

accelerations of the masses can be expressed in terms of zK as xK
A
"(m/m

A
)zK and

xK
B
"!(m/m

B
)zK , where m"m

A
m

B
/(m

A
#m

B
) is the reduced mass of the system. The

equation of motion of these masses during the impact becomes

mzK#czR#kz"0. (1)

For the solution of this equation, the initial conditions can be expressed as
z(0)"0 and zR (0)"u

app
, where u

app
denotes the velocity at which the mass

A approaches the mass B. Further, the compressive force czR#kz sustained by the
contact spring}damper combination must remain positive throughout the impact.
From equation (1), this contact force can also be expressed as !mzK , and
consequently, zK vanishes at the end of the impact.

Rewriting equation (1) in the standard from zK#2bu
n
zR#u2

n
z"0 and solving

with the initial conditions z(0)"0 and zR (0)"u
app

yields

z"

i
g
g
j
g
g
k

u
app

e~bunt sin (J1!b2u
n
t)

J1!b2u
n

, b(1,

u
app

e~bunt sinh (Jb2!1u
n
t)

Jb2!1u
n

, b'1.

(2)

Considering the limit of RHS of equation (2) as bP1, the spring compression
z corresponding to the critically damped case b"1 can be obtained as u

app
te~unt .

Furthermore, it is convenient to introduced the variables c"cos~1b and
c@"cosh~1b to represent the damping ratio b for the analysis of the underdamped
and the overdamped cases of the motion. The solutions for the two cases b(1 and
b'1 can be uni"ed using the relationship c@"jc. Here, the variable c decreases
from n/2 to zero as the damping ratio in creases from zero to unity, and the second
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variable c@ increases from zero to in"nity as the damping ratio increases beyond
unity.

By setting zK"0, the duration of impact can be evaluated as

q"G
2c/u

n
sin c, b(1,

2c@/u
n
sin c@, b'1.

(3)

For the critically damped case, the variables c and c@ vanish, and consequently
the duration of impact of b"1 can be deduced from the limit of the RHS of
equation (3) as 2/u

n
. Figure 2 illustrates the variation of the non-dimensional

impact duration u
n
q with the damping ratio b, as presented in equation (3). It

indicates that the non-dimensional impact duration is a monotonically decreasing
function of the damping ratio.

By imposing zR"0, the time taken for the compression in the spring}damper
combination to reach its maximum value can be obtained from equations (2) and
(3) as q/2. The velocity of separation u

sep
of the masses after the impact is

determined from equation (2) as the value of !zR at t"q. The coe$cient of
restitution, e"u

sep
/u

app
, is then evaluated as

e"G
e~2c@5!/c, b(1,

e~2c{@5!/)c{, b'1.
(4)

From the de"nitions of c and c@, it can be seen that the expression for the
coe$cient of restitution in equation (4) depends on the damping ratio b only. For
the critically damped case, the limiting value of the RHS of equation (4) yields the
coe$cient of restitution as e~2.
Figure 2. Variation of non-dimensional impact duration with damping ratio.
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The compression in the spring}damper combination at the time of separation of
the masses can be determined by substituting t"q into equation (2). Using
equations (3, 4) and the de"nitions of c and c@, this result can be simpli"ed to
2ebu

app
/u

n
. Since the maximum compression in the materials occur at t"q/2, its

expression can similarly be obtained from equations (2)}(4) as Je u
app

/u
n
.

Equations (3) and (4) are shown graphically in Figures 3 and 4 as variations of the
non-dimensional impact duration u

n
q and the damping ratio b against the

coe$cient of restitution e. Figure 4 indicates that the coe$cient of restitution is
a monotonically decreasing function of the damping ratio. These graphs may be
used to estimate the values of b and u

n
from e and q. Since k"mu2

n
, the parameters

of the contact spring}damper combination can be determined from the impact
duration, coe$cient of restitution and the reduced mass m.
Figure 4. Variation of damping ratio with coe$cient of restitution.

Figure 3. Variation of impact duration with coe$cient of restitution.
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Figures 4 and 3 can also be used to determine e and q from known values of b and
u

n
. Thus, the impact duration is an important parameter similar to the coe$cient

of restitution, which depends on the material and surface condition of impacting
bodies. Specially, this observation implies that the impact duration is independent
of the velocities of the impacting bodies.

When the curvature of at least one contacting surface is large, the contact area
depends strongly on the deformation. Because of this dependence, the Hertzian
contact theory yields a non-linear contact spring. An impact analysis using such
a non-linear elastic contact spring predicts the impact duration to vary inversely as
the one-"fth power of the velocity of approach [1, 7]. Thus, the constancy of the
impact duration in the present analysis is thus attributed to the assumption of
a linear contact spring}damper combination. Such an assumption is reasonable in
the case where the variation in the contact area with deformation is negligible.

The expression for the contact force czR#kz in the spring}damper combination
during the impact can be deduced from equation (2) as

F"

i
g
j
g
k

mu
n
u
app

e~bunt sin(2c!u
n
t sin c)

sin c
, b(1,

mu
n
u
app

e~bunt sinh(2c@!u
n
t sinh c@)

sinh c@
, b'1,

(5)

From the limit of the right-handside of equation (5), as cP0, the contact force for
the critically damped case can be inferred as mu

n
u
app

e~unt (2!u
n
t). Further, at

t"0#, equation (5) indicates that the contact force jumps to 2bu
n
mu

app
, which

clearly represents the initial reaction of the contact damper to the velocity of
approach.

To facilitate the graphing of the variation of F against t, an expression for dF/dt
can be obtained from equation (5) as

dF
dt

"

i
g
j
g
k

!

mu2
n
u
app

e~bunt sin(n!3c#u
n
t sin c)

sin c
, b(1,

!

mu2
n
u
app

e~bunt sinh(3c@!u
n
t sinh c@)

sinh c@
, b'1,

(6)

When b(1, equation (6) indicates that the sign of dF/dt is the opposite of that of
sin(n!3c#u

n
t sin c). From equation (3), it can be observed that the argument

(n!3c#u
n
t sin c) of this sine function increases from (n!3c) to (n!c) as

t increases from 0 to q. Thus, there can be two types of impact force variation
depending on whether c'n/3 or c(n/3.

When b(0)5, F increases "rst with t in the interval 0(t((3c!n)/u
n
sin c and

then decreases as t increases further. In this "rst type of force variation, the impact
force reaches a peak value, which is greater than the initial reaction of the damper
at t"0#. But, when 0)5(b(1, the impact force decreases steadily from its initial
value at t"0#. Further, from equation (6), it can be observed that this second type
of impact force variation continues for the case b'1 also. As bP0)5!, the time at
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which the force attains its peak value approaches 0#. This result indicates a smooth
merging of these two types of force variations at b"0)5. These two types of impact
force variations are illustrated as plots of F/mu

n
u
app

versus u
n
t in Figure 5.

The impact motion has two phases. In the "rst phase, 0(t(q/2, the
compression increases at a decreasing rate and consequently the spring force
increases while the damper force decreases. In the second phase, q/2(t(q, the
compression decreases at an increasing rate and both the spring and damper forces
decrease. Thus, when the variation of the impact force with time is of the "rst type,
the maximum impact force has to occur within the "rst phase of the impact motion.
Speci"cally, this implies that the total force in the spring}damper combination
reaches its maximum prior to the instant at which the compression is at its
maximum. In fact, the time q(3c!n)/2c sin c, at which the total force in the "rst
type of impact force variation reaches its maximum, changes gradually from q/2 to
0#as the parameter c changes from n/2 to n/3.

Since the coe$cient of restitution is a more familiar parameter than the damping
ratio, it is desirable to visualize the force versus time variation during impact for
various values of this coe$cient. The damping ratio corresponding to a chosen
coe$cient of restitution can be calculated from equation (4) by using the
Newton}Raphson method. The coe$cient of restitution corresponding to b"0)5
can be calculated from equation (4) as e~2n@3J3 which is about 0)3. Thus, the impact
force versus time variation has a peak when the coe$cient of restitution exceeds
this value.

In the absence of the contact damper (b"0), equation (5) gives the impact force
variation as F"mu

n
u
app

sin u
n
t. The amplitude mu

n
u
app

of this half-sinusoidal
variation is used as a standard to non-dimensionalize the impact force. Equation (5)
is therefore rewritten as F"C

F
mu

n
u
app

, where C
F

is the non-dimensional impact
force which depends on the damping ratio b and the non-dimensional time u

n
t.

Since the damping ratio corresponding to a chosen coe$cient of restitution can
Figure 5. Two types of impact force variations: } }, "rst type, } ) }, second type.
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be calculated from equation (4), the variations of impact force with time in
equation (5) are plotted in non-dimensional form for chosen values of the
coe$cient of restitution in Figure 6.

When b(0)5, the impact force variation with time reveals a peak value, which is
larger than its initial value at t"0#. But, when b'0)5, the largest value of the
force is the initial reaction of the damper. Thus, the maximum value of this
non-dimensional force, F

.!9
/mu

n
u
app

, can be expressed from equations (5) nd (6) as,

C
F,.!9

"G
e~(3c~n)@5!/c, b(0)5,

2b, b'0)5.
(7)

Equation (7) indicates that the parameter C
F,.!9

initially decreases form unity as
b increases from zero, and subsequently increases with further increase in b.

The damping ratio corresponding to the minimum value of C
F,.!9

satis"es the
relation sin 2c"2(c!n/3), which simpli"es to b"0)265. Since this optimum
damping ratio is less than 0)5, the corresponding force variation is of the "rst type
with a peak value. The coe$cient of restitution and C

F,.!9
corresponding to this

optimum damping ratio can be calculated as 0)49 and 0)81 respectively. Thus, by
choosing this optimum damping, the maximum force during the impact can be
reduced by 19% of the perfectly elastic impact.

Depending on the application the average, r.m.s or r.m.q values of the
impact force are sometimes considered to assess the severity of impact. Using
equations (4) and (5), these estimates of the non-dimensional impact force can be
evaluated as

C
F,avr

"

b(1#e)
ln(1/e)

, C
F,rms

"C
1#4b2!e2

4 ln(1/e) D
1@2

, (8, 9)
Figure 6. Dependence of impact force variation on coe$cient of restitution: ---, e"0)1; } } },
e"0)2; **, e"0)3; * .* , 0.4; } . } . }, 0)6; , 0)8; , 1)0.



Figure 7. Variation of force parameters with coe$cient of restitution::*, max; } ) } ) }, rmq; - - - -, rms;
} } }, avr,
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C
F,rmq

"C
3#24b2#112b4#192b6!3e4

32(1#3b2) ln(1/e) D
1@4

. (10)

Equations (8)}(10) are valid for the entire range of the damping ratio. However,
when b"0, the numerator and denominator of these equations vanish and the
value of these parameters at b"0 can be evaluated from their limiting values as
b approaches zero.

When b is small, equation (4) yields the "rst order approximation of the
coe$cient of restitution as e+1!nb#o(b2), which in turn gives ln(1/e)"
nb#o(b2). Consequently, the force parameters C

F,avr
, C

F,rms
and C

F,rmq
expressed

in equations (8)}(10) approach their expected results (2/n), (1/2)1@2 and (3/8)1@4
corresponding to the half-sinusoidal variation of the impact force.

The variations of these force parameters C
F,.!9

, C
F,avr

, C
F,rms

and C
F,rmq

with the
coe$cient of restitution are shown in Figure 7. Since F

.!9
"(C

F,.!9
/C

F,avr
)F

avr
,

F
rms

"(C
F,rms

/C
F,avr

) F
avr

and F
rmq

"(C
F,rmq

/C
F,avr

) F
avr

, the maximum, the r.m.s.
and r.m.q. values of the impact force can be related to its average value through
these non-dimensional force coe$cients. The results can therefore be used to
estimate the r.m.s. and the r.m.q. values of the impact force when the coe$cient of
restitution and the impact duration are known.

Apart from the impact force, the accelerations of the masses are sometimes
considered as the indicator of the severity of the impact. The accelerations of the
masses during the impact are related to the force of impact by the relations,
xK
A
"!F/m

A
and xK

B
"F/m

B
. Consequently, the variations of the accelerations of

the masses are similar to that of the impact force shown in Figure 6.

3. RESULTS AND DISCUSSION

A parallel combination of a spring and a damper is used to model the contact for
force variation analysis during a viscoelastic impact. The damping in the materials
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decreases the coe$cient of restitution. Figure 4 relates the decrease in the coe$cient
of restitution from unity to the damping ratio of the system. When the coe$cient of
restitution and the impact duration are known, Figure 3 can be used to determine
the natural frequency u

n
. Thus, Figures 3 and 4 can be used to estimate the

parameters of the contact spring and damper from the measured values of
coe$cient of restitution and the impact duration.

In a design application, having chosen the shapes and materials of the impacting
surfaces, stress analysis methods can be used to estimate the contact spring
sti!ness. When a contacting material is not a Hookian solid, it can be represented
by the Kelvin}Vio( gt model of a viscoelastic material. The time constants of
the chosen viscoelastic material models provide the additional information on
the ratio of the damping coe$cient to the sti!ness. When the time constants
of the material models are nearly equals, the coe$cient of the contact damper
can be estimated. The present analysis provides a method to determine the
natural frequency and damping ratio of the system from the masses and the
parameters of the contact spring}damper combination. In such a situation, Figures
4 and 2 can be used to estimate the coe$cient of restitution and the impact
duration for impact analysis. These "gures indicate that a heavier damping element
in the contact model reduces the impact duration as well as the coe$cient of
restitution.

The present investigation is aimed to provide information on the force variation
when the coe$cient of restitution and the impact duration are known. Figure
6 illustrates the nature of the force variations for e"1)0, 0)8, 0)6, 0)3, 0)2 and 0)1.
For perfectly elastic impact (e"1), the force increases gradually from zero and
follows a half-sinusoidal variation. In the case of viscoelastic impact, the contact
damper reaction to the sudden change of velocity at the beginning of impact can be
noticed as a jump of impact force at t"0#. Subsequently, the impact force follows
two types of variations depending on the value of the coe$cient of restitution, e.
When the damping is not very heavy, 1'e'0)3, the force increases "rst to reach
its peak value and then decreases to zero. In the second type of variation for
0)3'e'0, the force decreases steadily to zero from its initial value. Here, the force
variation for e"0)3 can be considered as a degenerated form of the "rst type where
the peak value occurs at t"0#.

Figure 6 clearly shows that a larger impact force is induced in the second type of
variation and consequently this range of the coe$cient of restitution is unsuitable
for applications where the impact force must be kept under control. Further, this
"gure shows that a controlled amount of damping has the favorable in#uence in
reducing the maximum impact force. Figure 7 shows that the maximum force
during impact can be reduced by about 19% by providing an optimum damping
corresponding to e"0)49.

Figure 7 shows that for a chosen coe$cient of restitution, the various measures of
the impact force can be ordered as F

avr
(F

rms
(F

rmq
(F

.!9
. Of these four

measures, F
avr

can be estimated easily from the momentum exchange and the
impact duration. Even though F

.!9
is the most important measure of the impact

force, it is di$cult to measure this value within the short duration of impact.
A glance at Figure 7 reveals that the r.m.q. estimate is closer to the maximum



Figure 8. Variation of force ratio with coe$cient of restitution: *, max/avr; } } }, rmq/avr; ----,
rms/avr.
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impact force than the r.m.s. value. Consequently, it is reasonable to consider the
r.m.q. of the impact force as a useful estimate for the assessment of exposure of
human body to harmful vibration comprising shocks [6].

Since it is comparatively easy to estimate F
avr

from the momentum exchanged
and the impact duration, it can be used as a standard for comparison of the other
impact force measures corresponding to a chosen value of the coe$cient of
restitution. When F

avr
is known, these impact force measures can be estimated easily

from the variations of (F
.!9

/F
avr

), (F
rms

/F
avr

) and (F
rmq

/F
avr

) with the coe$cient of
restitution. A plot of these force ratios against the coe$cient of restitution, shown
in Figure 8, indicates that the di!erence between the estimates of the impact force
measures is larger for lower values of the coe$cient of restitution corresponding to
nearly plastic impacts.

The contact spring}damper model used in this analysis is theoretically exact for
the case where the materials of the impacting bodies can be represented by
Kelvin}Vio( gt solids having the equal time constants. When the materials of the
bodies are signi"cantly di!erent, a series arrangement of two spring}damper
combinations can be used to model the contact. The use of such an improved model
for the contact results in a system having a cubic characteristic equation, which is
not readily amenable to complete theoretical analysis. The present preliminary
analysis provides the necessary insight and background to interpret the numerical
results of an involved analysis using such an improved model.

4. CONCLUSIONS

The force variation during a rectilinear impact is investigated by modelling the
contact as a parallel combination of a spring and a damper. A sti!er spring reduces
the impact duration and thereby increases the impact force. The damping reduces
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the coe$cient of restitution and this reduction is a measure of the damping ratio of
the system.

The impact force variation can be classi"ed into two types depending on whether
the coe$cient of restitution is greater than or less than 0)3. The "rst type of force
variation corresponding to the larger values of the coe$cient of restitution shows
a peak. The peak force can be minimized by providing a controlled amount of
damping in the material to keep the coe$cient of restitution around 0)49. However,
when there is excessive damping, which decreases the coe$cient of restitution
below 0)3, the impact force decreases from its initial value. The initial jump of the
impact force in this second type of variation is signi"cantly large and the impact
duration is small. Consequently, the coe$cient of restitution below 0)3 is
undesirable for constructive engineering applications where the reduction of impact
force is desirable.
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APPENDIX. NOMENCLATURE

c daming coe$cient
C

F
non-dimensional force, C

F
"F/mu

n
u
appF impact force, F"kz#czR

j j"J!1
k spring sti!ness
¸ distance between mass centers before impact
m reduced mass, m"m

A
m

B
/(m

A
#m

B
)

m
A
, m

B
masses of bodies A and B

t time
u
A
, u

B
velocities of masses

u
app

, u
sep

approach and separation velocities
x
A
, x

B
displacement of masses

z change in distance between the masses, z"¸!(x
B
!x

A
)

b damping ratio
c, c@ de"ned as c"cos~1b, c@"cosh~1b
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e coe$cient of restitution
q impact duration
u

n
natural frequency

( )
avr

average value
( )

.!9
maximum value

( )
rmq

r.m.q. value
( )

rms
r.m.s. value
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